organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-{[(Cyclohexyloxy)carbonyl]oxy}ethyl 3-{[2'-(2-ethyl-2H-tetrazol-5-yl)biphenyl-4-yl]methyl}-2-oxo-2,3-dihydro-1Hbenzimidazole-4-carboxylate

A. Mohan,^a P. Ramesh,^b D. Saravanan^a and M. N. Ponnuswamv^b*

^aDepartment of Chemistry, National College, Tiruchirappali 620 001, India, and ^bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 26 February 2010; accepted 24 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.143; data-to-parameter ratio = 17.6.

In the title compound, C₃₃H₃₄N₆O₆, the dihydrobenzimidazol-2-one ring system is essentially planar (r.m.s. deviation = 0.021 Å). The cyclohexane ring adopts a chair conformation. In the 5-(biphenyl-2-yl)-2H-tetrazole fragment, the tetrazole ring is twisted away from the attached benzene ring by $35.73 (11)^{\circ}$ and the two benzene rings form a dihedral angle of $68.00 (9)^{\circ}$. An intramolecular C-H···O interaction is observed. In the crystal, the molecules are linked into a zigzag chain running along the b axis by intermolecular N- $H \cdots O$ hydrogen bonds.

Related literature

For applications of tetrazole derivatives in coordination chemistry, medicinal chemistry and materials science, see: Dunica et al. (1991); Wittenberger & Donner (1993); Xiong et al. (2002); Xue et al. (2002). For metal-organic coordination compounds with tetrazole ligands, see: Hu et al. (2007); Lü (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

C33H34N6O6 $V = 6158.7 (5) \text{ Å}^3$ $M_r = 610.66$ Z = 8Monoclinic, C2/c Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ a = 16.3770(7) Å b = 8.5928 (4) Å T = 293 Kc = 43.7733 (19) Å $0.19 \times 0.14 \times 0.08 \; \rm mm$ $\beta = 91.150 (1)^{\circ}$

Data collection

Bruker Kappa APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.984, \ T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.143$	independent and constrained
S = 0.99	refinement
7255 reflections	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
412 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

34307 measured reflections

 $R_{\rm int} = 0.026$

7255 independent reflections

5559 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(Å,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$\begin{array}{c} N16-H16\cdots O6^{i}\\ C20-H20A\cdots O5\end{array}$	0.85 (2)	2.04 (2)	2.8508 (19)	161 (2)	
	0.97	2.22	3.004 (2)	137	

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the Management and Principal of National College, Tiruchirappalli, Tamil Nadu, India, for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5048).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395-2400.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
- Lü, Y. (2008). Acta Cryst. E64, m1255.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141. Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. L.
- (2002). Angew. Chem. Int. Ed. 41, 3800-3803.

Xue, X., Wang, X. S., Wang, L. Z., Xiong, R. G., Abrahams, B. F., You, X. Z., Xue, Z. L. & Che, C.-M. (2002). Inorg. Chem. 41, 3800-3803.

Acta Cryst. (2010). E66, o998 [doi:10.1107/S1600536810011049]

1-{[(Cyclohexyloxy)carbonyl]oxy}ethyl 3-{[2'-(2-ethyl-2*H*-tetrazol-5-yl)biphenyl-4-yl]methyl}-2-oxo-2,3-dihydro-1*H*-benzimidazole-4-carboxylate

A. Mohan, P. Ramesh, D. Saravanan and M. N. Ponnuswamy

Comment

Tetrazole derivatives have attracted considerable attention due to their biological activities. The synthesis of new ligands in this family is an important task for the development of modern coordination chemistry (Hu *et al.*, 2007; Lü, 2008). These compounds also possess wide range of applications in coordination chemistry, medicinal chemistry and materials science (Xiong *et al.*, 2002; Xue *et al.*, 2002; Dunica *et al.*, 1991; Wittenberger *et al.*, 1993). In view of these importance and to ascertain the molecular conformation, an X-ray crystallographic study of the title compound has been carried out.

In the title molecule (Fig.1), the dihydrobenzimidazol-2-one ring system and tetrazole ring are planar. The cyclohexane ring adopts a chair conformation; the puckering parameters (Cremer & Pople, 1975) are: $q_2 = 0.006$ (3) Å, $q_3 = -0.564$ (3) Å and $\varphi_2 = 106.1$ (1)°. The sum of the bond angles around atoms N16 (358.7°) and N18 (358.0°) of the benzimidazole ring system are in accordance with sp² hybridization. In the 5-(2-biphenyl)-2H-tetrazole fragment, the tetrazole ring is twisted away from the attached benzene ring by 35.73 (11)°, and the two benzene rings form a dihedral angle of 68.00 (9)°. An intramolecular C—H···O interaction is observed.

Atom N16 of the molecule at (x, y, z) donates a proton to atom O6 of the molecule at (1/2-x, 1/2+y, 1/2-z) forming an intermolecular N—H···O bond which link the molecules into a zigzag chain running along *b* axis as shown in Fig 2.

Experimental

To a suspension of $1-\{[(cyclohexyloxy)carbonyl]oxy\}$ ethyl-2-oxo- $1-\{[2'-(1H-tetrazol-5-yl) biphenyl-4-yl]methyl\}-1H-benzimidazole-7-carboxylate (40.0 g) in$ *N*,*N*-dimethyl formamide (250 ml), potassium carbonate (19 g) and ethyl iodide (16.0 g) were added. The mixture was heated and stirred for 2.5 h at 343–355 K. Then the solid was filtered and washed with cold water. The above solid material (20.0 g) was separated and purified by conventional column chromatography using hexane-ethyl acetate (2:1) as eluent. Single crystals were obtained by recrystallizing the crude product from ethanol by slow evaporation technique.

Refinement

The N-bound H atom was located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.93-0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and 1.2 $U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. The crystal packing of the title compound, viewed down the c axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

1-{[(Cyclohexyloxy)carbonyl]oxy}ethyl 3-{[2'-(2-ethyl-2*H*-tetrazol-5-yl)biphenyl-4-yl]methyl}- 2-oxo-2,3-dihydro-1*H*-benzimidazole-4-carboxylate

Crystal data

$C_{33}H_{34}N_6O_6$	F(000) = 2576
$M_r = 610.66$	$D_{\rm x} = 1.317 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3564 reflections
a = 16.3770 (7) Å	$\theta = 0.9 - 25.0^{\circ}$
b = 8.5928 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 43.7733 (19) Å	T = 293 K
$\beta = 91.150 \ (1)^{\circ}$	Plate, colourless
$V = 6158.7 (5) \text{ Å}^3$	$0.19\times0.14\times0.08~mm$
Z = 8	

Data collection

Bruker Kappa APEXII area-detector diffractometer	7255 independent reflections
Radiation source: fine-focus sealed tube	5559 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -21 \rightarrow 20$
$T_{\min} = 0.984, T_{\max} = 0.993$	$k = -11 \rightarrow 11$
34307 measured reflections	$l = -56 \rightarrow 57$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.143$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.99	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0675P)^{2} + 3.4615P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7255 reflections	$(\Delta/\sigma)_{\text{max}} = 0.017$
412 parameters	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.10538 (9)	0.40762 (15)	0.08077 (3)	0.0628 (3)
O2	-0.08267 (10)	0.24202 (17)	0.11988 (3)	0.0791 (4)
O3	-0.14741 (9)	0.47031 (16)	0.12506 (3)	0.0666 (4)
O4	-0.09830 (8)	0.58427 (14)	0.16718 (3)	0.0574 (3)
O5	-0.05644 (7)	0.45285 (14)	0.20880 (3)	0.0568 (3)
O6	0.24689 (8)	0.63668 (14)	0.25144 (3)	0.0567 (3)
C1	0.01658 (15)	0.3068 (4)	0.05704 (6)	0.1087 (10)
H1A	0.0403	0.2760	0.0766	0.130*
H1B	0.0329	0.4132	0.0530	0.130*
C2	0.04851 (15)	0.2007 (5)	0.03206 (7)	0.1128 (11)
H2A	0.1073	0.2125	0.0308	0.135*
H2B	0.0371	0.0932	0.0372	0.135*
C3	0.00998 (16)	0.2383 (3)	0.00197 (6)	0.0852 (7)
H3A	0.0286	0.1648	-0.0132	0.102*
H3B	0.0266	0.3417	-0.0043	0.102*
C4	-0.08144 (16)	0.2316 (3)	0.00346 (5)	0.0871 (7)
H4A	-0.0982	0.1255	0.0075	0.105*
H4B	-0.1050	0.2623	-0.0161	0.105*
C5	-0.11349 (14)	0.3378 (3)	0.02823 (5)	0.0725 (6)
H5A	-0.1020	0.4453	0.0231	0.087*
H5B	-0.1722	0.3258	0.0296	0.087*
C6	-0.07367 (11)	0.2981 (2)	0.05837 (4)	0.0570 (4)
H6	-0.0895	0.1923	0.0641	0.068*

C7	-0.10780 (11)	0.3606 (2)	0.10939 (4)	0.0528 (4)
C8	-0.14875 (11)	0.4568 (2)	0.15726 (4)	0.0564 (4)
H8	-0.1261	0.3569	0.1641	0.068*
C9	-0.23394 (14)	0.4783 (3)	0.16790 (5)	0.0839 (7)
H9A	-0.2553	0.5749	0.1601	0.126*
H9B	-0.2340	0.4800	0.1898	0.126*
Н9С	-0.2674	0.3939	0.1606	0.126*
C10	-0.05646 (9)	0.56936 (19)	0.19372 (3)	0.0443 (3)
C11	-0.01429 (9)	0.71732 (18)	0.20158 (3)	0.0444 (3)
C12	-0.05366 (11)	0.8580 (2)	0.19443 (4)	0.0552 (4)
H12	-0.1034	0.8546	0.1838	0.066*
C13	-0.02180 (12)	1.0009 (2)	0.20246 (5)	0.0621 (5)
H13	-0.0505	1.0911	0.1975	0.074*
C14	0.05270 (12)	1.0113 (2)	0.21790 (4)	0.0572 (4)
H14	0.0748	1.1072	0.2234	0.069*
C15	0.09259 (10)	0.87500 (18)	0.22476 (4)	0.0452 (4)
N16	0.16694 (9)	0.85162 (16)	0.23946 (3)	0.0479 (3)
H16	0.1995 (13)	0.923 (2)	0.2449 (5)	0.064 (6)*
C17	0.18479 (10)	0.69756 (18)	0.24083 (3)	0.0444 (3)
N18	0.11883 (8)	0.62020 (14)	0.22739 (3)	0.0408 (3)
C19	0.06123 (9)	0.72809 (17)	0.21703 (3)	0.0401 (3)
C20	0.12542 (10)	0.45543 (17)	0.21919 (3)	0.0429 (3)
H20A	0.0729	0.4053	0.2217	0.052*
H20B	0.1646	0.4051	0.2328	0.052*
C21	0.15208 (9)	0.43559 (17)	0.18655 (4)	0.0424 (3)
C22	0.22015 (11)	0.5131 (2)	0.17578 (4)	0.0556 (4)
H22	0.2508	0.5756	0.1890	0.067*
C23	0.24300 (11)	0.4989 (2)	0.14583 (4)	0.0569 (4)
H23	0.2884	0.5532	0.1391	0.068*
C24	0.19952 (10)	0.40521 (19)	0.12553 (4)	0.0484 (4)
C25	0.13343 (12)	0.3242 (2)	0.13648 (4)	0.0572 (4)
H25	0.1046	0.2574	0.1235	0.069*
C26	0.10931 (11)	0.3405 (2)	0.16638 (4)	0.0538 (4)
H26	0.0637	0.2868	0.1730	0.065*
C27	0.22306 (10)	0.3941 (2)	0.09282 (4)	0.0502 (4)
C28	0.25473 (13)	0.2562 (2)	0.08167 (5)	0.0660 (5)
H28	0.2580	0.1695	0.0944	0.079*
C29	0.28138 (14)	0.2456 (3)	0.05206 (5)	0.0750 (6)
H29	0.3026	0.1522	0.0450	0.090*
C30	0.27686 (13)	0.3714 (3)	0.03306 (5)	0.0713 (6)
H30	0.2963	0.3645	0.0133	0.086*
C31	0.24339 (12)	0.5087 (2)	0.04329 (4)	0.0619 (5)
H31	0.2391	0.5936	0.0302	0.074*
C32	0.21603 (10)	0.5215 (2)	0.07304 (4)	0.0503 (4)
C33	0.17652 (10)	0.6676 (2)	0.08233 (4)	0.0518 (4)
N34	0.19874 (13)	0.8085 (2)	0.07278 (5)	0.0880 (6)
N35	0.14788 (13)	0.9081 (2)	0.08502 (6)	0.0919 (6)
N36	0.09842 (10)	0.82671 (19)	0.10133 (4)	0.0671 (4)
N37	0.11305 (11)	0.67617 (19)	0.10042 (4)	0.0722 (5)

C38	0.03020 (16)	0.8941 (3)	0.11829 (7)	0.0923 (8)
H38A	0.0323	0.8566	0.1392	0.111*
H38B	0.0356	1.0065	0.1187	0.111*
C39	-0.04796 (16)	0.8525 (3)	0.10426 (9)	0.1114 (10)
H39A	-0.0501	0.8894	0.0836	0.167*
H39B	-0.0912	0.8992	0.1155	0.167*
H39C	-0.0541	0.7414	0.1044	0.167*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0817 (9)	0.0544 (7)	0.0523 (7)	0.0067 (6)	0.0012 (6)	-0.0039 (6)
O2	0.1041 (11)	0.0636 (9)	0.0700 (9)	0.0226 (8)	0.0118 (8)	0.0078 (7)
O3	0.0888 (9)	0.0646 (8)	0.0459 (7)	0.0217 (7)	-0.0104 (6)	-0.0073 (6)
O4	0.0671 (8)	0.0548 (7)	0.0496 (7)	-0.0036 (6)	-0.0145 (6)	0.0028 (5)
05	0.0632 (7)	0.0562 (7)	0.0505 (7)	-0.0091 (6)	-0.0077 (5)	0.0100 (6)
O6	0.0564 (7)	0.0507 (7)	0.0624 (7)	0.0044 (5)	-0.0168 (6)	-0.0005 (5)
C1	0.0600 (13)	0.180 (3)	0.0852 (17)	-0.0025 (16)	-0.0065 (12)	-0.0433 (19)
C2	0.0604 (14)	0.180 (3)	0.099 (2)	0.0255 (17)	0.0073 (13)	-0.036 (2)
C3	0.0959 (17)	0.0853 (16)	0.0755 (14)	0.0040 (13)	0.0323 (13)	-0.0007 (12)
C4	0.0925 (17)	0.1098 (19)	0.0588 (12)	0.0266 (14)	-0.0034 (11)	-0.0175 (12)
C5	0.0751 (13)	0.0808 (14)	0.0617 (12)	0.0164 (11)	0.0018 (10)	-0.0073 (10)
C6	0.0629 (11)	0.0526 (10)	0.0558 (10)	0.0027 (8)	0.0068 (8)	-0.0049 (8)
C7	0.0524 (9)	0.0496 (9)	0.0561 (10)	-0.0003 (8)	-0.0036 (8)	-0.0041 (8)
C8	0.0665 (11)	0.0564 (10)	0.0459 (9)	-0.0010 (8)	-0.0097 (8)	-0.0012 (8)
С9	0.0662 (13)	0.1121 (19)	0.0734 (14)	-0.0081 (13)	0.0012 (11)	-0.0025 (13)
C10	0.0421 (8)	0.0518 (9)	0.0390 (8)	0.0031 (7)	0.0011 (6)	0.0004 (7)
C11	0.0456 (8)	0.0462 (8)	0.0414 (8)	0.0030 (7)	0.0014 (6)	0.0023 (6)
C12	0.0525 (9)	0.0562 (10)	0.0565 (10)	0.0106 (8)	-0.0068 (8)	0.0040 (8)
C13	0.0672 (11)	0.0462 (9)	0.0726 (12)	0.0147 (8)	-0.0048 (9)	0.0080 (9)
C14	0.0693 (11)	0.0377 (8)	0.0644 (11)	0.0019 (8)	-0.0012 (9)	0.0035 (7)
C15	0.0501 (9)	0.0419 (8)	0.0438 (8)	-0.0007 (7)	0.0024 (7)	0.0034 (6)
N16	0.0503 (8)	0.0408 (7)	0.0525 (8)	-0.0040 (6)	-0.0022 (6)	-0.0014 (6)
C17	0.0500 (9)	0.0433 (8)	0.0399 (8)	0.0002 (7)	-0.0016 (6)	0.0012 (6)
N18	0.0466 (7)	0.0368 (6)	0.0390 (6)	0.0014 (5)	-0.0020 (5)	0.0026 (5)
C19	0.0457 (8)	0.0378 (7)	0.0368 (7)	0.0024 (6)	0.0033 (6)	0.0038 (6)
C20	0.0504 (8)	0.0340 (7)	0.0442 (8)	0.0024 (6)	-0.0052 (6)	0.0053 (6)
C21	0.0459 (8)	0.0346 (7)	0.0465 (8)	0.0050 (6)	-0.0045 (6)	0.0020 (6)
C22	0.0500 (9)	0.0607 (10)	0.0560 (10)	-0.0081 (8)	0.0003 (7)	-0.0154 (8)
C23	0.0474 (9)	0.0639 (11)	0.0599 (10)	-0.0083 (8)	0.0076 (8)	-0.0100 (9)
C24	0.0525 (9)	0.0432 (8)	0.0494 (9)	0.0071 (7)	-0.0006 (7)	-0.0021 (7)
C25	0.0700 (11)	0.0511 (10)	0.0503 (9)	-0.0139 (8)	-0.0077 (8)	-0.0038 (8)
C26	0.0619 (10)	0.0481 (9)	0.0513 (9)	-0.0131 (8)	-0.0023 (8)	0.0039 (7)
C27	0.0464 (8)	0.0534 (9)	0.0505 (9)	0.0043 (7)	-0.0017 (7)	-0.0078 (7)
C28	0.0738 (13)	0.0592 (11)	0.0649 (12)	0.0169 (10)	-0.0017 (10)	-0.0096 (9)
C29	0.0766 (13)	0.0744 (14)	0.0741 (14)	0.0201 (11)	0.0048 (11)	-0.0262 (11)
C30	0.0681 (12)	0.0905 (16)	0.0557 (11)	0.0045 (11)	0.0111 (9)	-0.0228 (11)
C31	0.0618 (11)	0.0720 (12)	0.0522 (10)	0.0010 (9)	0.0062 (8)	-0.0037 (9)

C32	0.0446 (8)	0.0547 (10)	0.0515 (9)	0.0012 (7)	0.0023 (7)	-0.0065 (7)
C33	0.0516 (9)	0.0529 (9)	0.0508 (9)	0.0010 (8)	0.0027 (7)	-0.0009 (7)
N34	0.0871 (13)	0.0578 (10)	0.1206 (17)	-0.0016 (10)	0.0389 (12)	0.0022 (11)
N35	0.0909 (14)	0.0528 (10)	0.1329 (19)	0.0002 (10)	0.0299 (13)	-0.0023 (11)
N36	0.0632 (9)	0.0525 (9)	0.0861 (12)	0.0072 (8)	0.0118 (8)	-0.0043 (8)
N37	0.0714 (10)	0.0525 (9)	0.0935 (13)	0.0126 (8)	0.0265 (9)	0.0053 (8)
C38	0.0877 (17)	0.0716 (14)	0.118 (2)	0.0227 (13)	0.0237 (15)	-0.0142 (14)
C39	0.0715 (16)	0.0864 (18)	0.177 (3)	0.0111 (14)	0.0266 (18)	-0.0051 (19)
Geometric paran	neters (Å, °)					
O1—C7		1.318 (2)	N16—0	217	1.357	(2)
01		1.462 (2)	N16—I	116	0.85 (2)
O2—C7		1.188 (2)	C17—N	118	1.389	(2)
O3—C7		1.341 (2)	N18—0	219	1.3919	(_) 9 (19)
03-08		1.5 (2)	N18—0	220	1 4652	2 (19)
04—C10		1 3432 (18)	C20—0	21	1 512	(2)
04-08		1.3132(10) 1.434(2)	C20-E	120A	0.97	(_)
01-00 05-010		1 1992 (19)	C20-F	12011 120B	0.97	
06-C17		1 2265 (19)	C21-C	26	1 383	(2)
C1-C6		1.482 (3)	C21-C	20	1 389	(2)
C1-C2		1.524 (4)	C22-0	223	1 376	(2)
C1—H1A		0.97	C22	122	0.93	(_)
C1—H1B		0.97	C22 1	224	1 385	(2)
$C^2 - C^3$		1 485 (4)	C23—F	123	0.93	(_)
C2—H2A		0.97	C24-C	25	1 381	(2)
C2—H2B		0.97	C24—(27	1 494	(2)
C3—C4		1 501 (4)	C25—C	26	1 382	(3)
С3—НЗА		0.97	C25—H	125	0.93	
C3—H3B		0.97	C26—H	126	0.93	
C4—C5		1.519 (3)	C27—C	228	1.386	(2)
C4—H4A		0.97	C27—C	32	1 399	(2)
C4—H4B		0.97	C28—C	29	1 379	(3)
C5-C6		1 499 (3)	C28—F	128	0.93	(5)
C5—H5A		0.97	C29—0	230	1.365	(3)
C5—H5B		0.97	C29—H	129	0.93	
С6—Н6		0.98	C30-C	31	1 380	(3)
C8—C9		1 491 (3)	C30—F	130	0.93	(5)
C8—H8		0.98	C31—C	232	1.390	(2)
С9—Н9А		0.96	C31—H	131	0.93	(-)
С9—Н9В		0.96	C32—0	233	1.473	(2)
С9—Н9С		0.96	C33—N	137	1.321	(2)
C10-C11		1.484 (2)	C33—N	134	1.334	(2)
C11—C19		1.401 (2)	N34—1	135	1.316	(3)
C11—C12		1.402 (2)	N35—N	136	1.296	(3)
C12—C13		1.377 (3)	N36—N	137	1.316	(2)
C12—H12		0.93	N36—0	238	1.472	(3)
C13—C14		1.386 (3)	C38—0	239	1.453	(4)
С13—Н13		0.93	C38—H	I38A	0.97	

C14—C15	1.372 (2)	C38—H38B	0.97
C14—H14	0.93	С39—Н39А	0.96
C15—N16	1.381 (2)	С39—Н39В	0.96
C15—C19	1.402 (2)	С39—Н39С	0.96
C7—O1—C6	117.26 (14)	C15—N16—H16	124.8 (14)
С7—О3—С8	117.98 (14)	O6—C17—N16	127.52 (15)
C10—O4—C8	118.04 (13)	O6—C17—N18	126.02 (14)
C6—C1—C2	110.8 (2)	N16—C17—N18	106.46 (13)
C6—C1—H1A	109.5	C17—N18—C19	109.60 (12)
C2—C1—H1A	109.5	C17—N18—C20	120.38 (13)
C6—C1—H1B	109.5	C19—N18—C20	128.06 (12)
C2—C1—H1B	109.5	N18—C19—C11	134.37 (14)
H1A—C1—H1B	108.1	N18—C19—C15	106.18 (13)
C3—C2—C1	111.2 (3)	C11—C19—C15	119.45 (14)
C3—C2—H2A	109.4	N18—C20—C21	111.38 (12)
C1—C2—H2A	109.4	N18—C20—H20A	109.4
C3—C2—H2B	109.4	C21—C20—H20A	109.4
C1—C2—H2B	109.4	N18—C20—H20B	109.4
H2A—C2—H2B	108.0	C21—C20—H20B	109.4
C2—C3—C4	111.1 (2)	H20A—C20—H20B	108.0
С2—С3—НЗА	109.4	C26—C21—C22	117.78 (15)
С4—С3—Н3А	109.4	C26—C21—C20	121.18 (14)
С2—С3—Н3В	109.4	C22—C21—C20	121.04 (14)
C4—C3—H3B	109.4	C23—C22—C21	121.10 (16)
НЗА—СЗ—НЗВ	108.0	С23—С22—Н22	119.4
C3—C4—C5	111.6 (2)	C21—C22—H22	119.4
C3—C4—H4A	109.3	C22—C23—C24	121.07 (16)
С5—С4—Н4А	109.3	С22—С23—Н23	119.5
C3—C4—H4B	109.3	С24—С23—Н23	119.5
C5—C4—H4B	109.3	C25—C24—C23	117.84 (16)
H4A—C4—H4B	108.0	C25—C24—C27	121.32 (15)
C6—C5—C4	109.95 (18)	C23—C24—C27	120.84 (16)
С6—С5—Н5А	109.7	C24—C25—C26	121.24 (16)
C4—C5—H5A	109.7	С24—С25—Н25	119.4
С6—С5—Н5В	109.7	С26—С25—Н25	119.4
C4—C5—H5B	109.7	C21—C26—C25	120.92 (16)
H5A—C5—H5B	108.2	С21—С26—Н26	119.5
O1—C6—C1	111.23 (17)	С25—С26—Н26	119.5
O1—C6—C5	106.85 (15)	C28—C27—C32	118.54 (17)
C1—C6—C5	111.75 (19)	C28—C27—C24	119.85 (16)
O1—C6—H6	109.0	C32—C27—C24	121.59 (15)
С1—С6—Н6	109.0	C29—C28—C27	121.0 (2)
С5—С6—Н6	109.0	C29—C28—H28	119.5
O2—C7—O1	127.88 (17)	C27—C28—H28	119.5
O2—C7—O3	124.95 (17)	C30—C29—C28	120.42 (19)
O1—C7—O3	107.13 (15)	С30—С29—Н29	119.8
O3—C8—O4	102.64 (14)	С28—С29—Н29	119.8
O3—C8—C9	109.53 (16)	C29—C30—C31	119.77 (19)
O4—C8—C9	110.35 (17)	С29—С30—Н30	120.1

O3—C8—H8	111.3	C31—C30—H30	120.1
O4—C8—H8	111.3	C30—C31—C32	120.61 (19)
С9—С8—Н8	111.3	C30-C31-H31	119.7
С8—С9—Н9А	109.5	С32—С31—Н31	119.7
С8—С9—Н9В	109.5	C31—C32—C27	119.62 (16)
Н9А—С9—Н9В	109.5	C31—C32—C33	118.51 (17)
С8—С9—Н9С	109.5	C27—C32—C33	121.80 (15)
Н9А—С9—Н9С	109.5	N37—C33—N34	111.09 (16)
Н9В—С9—Н9С	109.5	N37—C33—C32	124.63 (16)
O5-C10-O4	123.38 (15)	N34—C33—C32	124.25 (17)
O5-C10-C11	126.35 (14)	N35—N34—C33	106.52 (18)
O4—C10—C11	110.23 (13)	N36—N35—N34	106.30 (17)
C19—C11—C12	116.65 (15)	N35—N36—N37	113.45 (16)
C19—C11—C10	124.81 (14)	N35—N36—C38	123.69 (18)
C12—C11—C10	118.48 (14)	N37—N36—C38	122.82 (18)
C13—C12—C11	122.79 (16)	N36—N37—C33	102.65 (16)
С13—С12—Н12	118.6	C39—C38—N36	111.2 (2)
C11—C12—H12	118.6	С39—С38—Н38А	109.4
C12—C13—C14	120.48 (16)	N36—C38—H38A	109.4
С12—С13—Н13	119.8	С39—С38—Н38В	109.4
C14—C13—H13	119.8	N36—C38—H38B	109.4
C15—C14—C13	117.54 (16)	H38A—C38—H38B	108.0
C15—C14—H14	121.2	С38—С39—Н39А	109.5
C13—C14—H14	121.2	С38—С39—Н39В	109.5
C14—C15—N16	129.65 (15)	Н39А—С39—Н39В	109.5
C14—C15—C19	123.08 (15)	С38—С39—Н39С	109.5
N16—C15—C19	107.27 (13)	Н39А—С39—Н39С	109.5
C17—N16—C15	110.47 (14)	Н39В—С39—Н39С	109.5
C17—N16—H16	124.4 (14)		
C6—C1—C2—C3	55.9 (4)	N16-C15-C19-N18	-0.28(17)
C1 - C2 - C3 - C4	-55.3 (4)	C14—C15—C19—C11	0.0 (2)
C2—C3—C4—C5	55.8 (3)	N16-C15-C19-C11	-179.68 (14)
C3—C4—C5—C6	-55.5 (3)	C17—N18—C20—C21	-92.35 (16)
C7—O1—C6—C1	-85.6 (2)	C19—N18—C20—C21	70.00 (19)
C7—O1—C6—C5	152.22 (17)	N18—C20—C21—C26	-128.84 (15)
C2-C1-C6-01	-176.0(2)	N18—C20—C21—C22	50.8 (2)
C2-C1-C6-C5	-56.6 (3)	C26—C21—C22—C23	1.7 (3)
C4—C5—C6—O1	178.24 (19)	C20—C21—C22—C23	-177.95 (16)
C4—C5—C6—C1	56.4 (3)	C21—C22—C23—C24	-0.9 (3)
C6—O1—C7—O2	5.0 (3)	C22—C23—C24—C25	-1.2 (3)
C6—O1—C7—O3	-172.79 (15)	C22—C23—C24—C27	178.11 (17)
C8—O3—C7—O2	10.3 (3)	C23—C24—C25—C26	2.5 (3)
C8—O3—C7—O1	-171.84 (15)	C27—C24—C25—C26	-176.77 (16)
C7—O3—C8—O4	110.92 (17)	C22—C21—C26—C25	-0.3 (3)
C7—O3—C8—C9	-131.85 (19)	C20—C21—C26—C25	179.28 (15)
C10—O4—C8—O3	-150.40 (14)	C24—C25—C26—C21	-1.8 (3)
C10—O4—C8—C9	92.95 (19)	C25—C24—C27—C28	-68.9 (2)
C8—O4—C10—O5	3.3 (2)	C23—C24—C27—C28	111.8 (2)
C8—O4—C10—C11	-174.68 (14)	C25—C24—C27—C32	112.8 (2)

O5-C10-C11-C19	35.4 (3)	C23—C24—C27—C32	-66.5 (2)
O4-C10-C11-C19	-146.73 (15)	C32—C27—C28—C29	2.2 (3)
O5-C10-C11-C12	-141.61 (18)	C24—C27—C28—C29	-176.16 (18)
O4-C10-C11-C12	36.3 (2)	C27—C28—C29—C30	-0.2 (3)
C19—C11—C12—C13	-1.3 (3)	C28—C29—C30—C31	-1.7 (3)
C10-C11-C12-C13	175.95 (17)	C29—C30—C31—C32	1.6 (3)
C11—C12—C13—C14	0.9 (3)	C30—C31—C32—C27	0.4 (3)
C12-C13-C14-C15	-0.1 (3)	C30—C31—C32—C33	-176.57 (17)
C13-C14-C15-N16	179.23 (17)	C28—C27—C32—C31	-2.3 (3)
C13-C14-C15-C19	-0.4 (3)	C24—C27—C32—C31	176.01 (16)
C14-C15-N16-C17	-178.38 (18)	C28—C27—C32—C33	174.63 (16)
C19-C15-N16-C17	1.28 (18)	C24—C27—C32—C33	-7.1 (2)
C15—N16—C17—O6	177.55 (16)	C31—C32—C33—N37	141.6 (2)
C15—N16—C17—N18	-1.74 (17)	C27—C32—C33—N37	-35.3 (3)
O6—C17—N18—C19	-177.75 (15)	C31—C32—C33—N34	-36.2 (3)
N16-C17-N18-C19	1.55 (17)	C27—C32—C33—N34	146.8 (2)
O6—C17—N18—C20	-12.4 (2)	N37—C33—N34—N35	-0.3 (3)
N16-C17-N18-C20	166.86 (13)	C32—C33—N34—N35	177.82 (19)
C17-N18-C19-C11	178.49 (16)	C33—N34—N35—N36	0.5 (3)
C20-N18-C19-C11	14.6 (3)	N34—N35—N36—N37	-0.6 (3)
C17—N18—C19—C15	-0.78 (16)	N34—N35—N36—C38	-178.2 (2)
C20-N18-C19-C15	-164.66 (14)	N35—N36—N37—C33	0.5 (3)
C12-C11-C19-N18	-178.42 (16)	C38—N36—N37—C33	178.1 (2)
C10-C11-C19-N18	4.6 (3)	N34—C33—N37—N36	-0.1 (2)
C12-C11-C19-C15	0.8 (2)	C32—C33—N37—N36	-178.19 (17)
C10-C11-C19-C15	-176.23 (14)	N35—N36—C38—C39	109.2 (3)
C14-C15-C19-N18	179.41 (16)	N37—N36—C38—C39	-68.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots \!$
N16—H16···O6 ⁱ	0.85 (2)	2.04 (2)	2.8508 (19)	161 (2)
C20—H20A…O5	0.97	2.22	3.004 (2)	137
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$.				

